"YOUR FRIENDLY PHILIPPINE FOREIGNERS AND PHILIPPINE PROVINCES ONLINE ELECTRICAL SUPPLIER"

"YOUR FRIENDLY PHILIPPINE FOREIGNERS AND PHILIPPINE PROVINCES ONLINE ELECTRICAL SUPPLIER...AND SERVICE PROVIDER" WE'LL HELP YOU OWN YOUR ELECTRICAL SUPPLIES REQUIREMENTS

Sunday, September 8, 2013

Simple Methods for Calculating Short Circuit Current Without a Computer.for your philippine electrical concerns...needs...installation...orders...safeelectrical2013@gmail.com

Simple Methods for Calculating Short Circuit Current Without a Computer


A Short Circuit analysis is used to determine the magnitude of short circuit current the system is capable of producing and compares that magnitude with the interrupting rating of the overcurrent protective devices (OCPD). Since the interrupting ratings are based by the standards, the methods used in conducting a short circuit analysis must conform to the procedures which the standard making organizations specify for this purpose. In the United States, the America National Standards Institute (ANSI) publishes both the standards for equipment and the application guides, which describes the calculation methods.

Short circuit currents impose the most serious general hazard to power distribution system components and are the prime concerns in developing and applying protection systems. Fortunately, short circuit currents are relatively easy to calculate. The application of three or four fundamental concepts of circuit analysis will derive the basic nature of short circuit currents. These concepts will be stated and utilized in a step-by-step development.

The three phase bolted short circuit currents are the basic reference quantities in a system study. In all cases, knowledge of the three phase bolted fault value is wanted and needs to be singled out for independent treatment. This will set the pattern to be used in other cases.

A device that interrupts short circuit current, is a device connected into an electric circuit to provide protection against excessive damage when a short circuit occurs. It provides this protection by automatically interrupting the large value of current flow, so the device should be rated to interrupt and stop the flow of fault current without damage to the overcurrent protection device. The OCPD will also provide automatic interruption of overload currents.

Listed here are reference values that will be needed in the calculation of fault current.


Reactance Values for Induction and Synchronous Machine



TRANSFORMER FAULT CURRENT


Calculating the Short Circuit Current when there is a Transformer in the circuit. Every transformer has “ %” impedance value stamped on the nameplate. Why is it stamped? It is stamped because it is a tested value after the transformer has been manufactured. The test is as follows: A voltmeter is connected to the primary of the transformer and the secondary 3-Phase windings are bolted together with an ampere meter to read the value of current flowing in the 3-Phase bolted fault on the secondary. The voltage is brought up in steps until the secondary full load current is reached on the ampere meter connected on the transformer secondary.

So what does this mean for a 1000KVA 13.8KV – 480Y/277V. First you will need to know the transformer Full Load Amps Full Load Ampere = KVA / 1.73 x L-L KV
FLA = 1000 / 1.732 x 0.48 FLA = 1,202.85
The 1000KVA 480V secondary full load ampere is 1,202A.

When the secondary ampere meter reads 1,202A and the primary Voltage Meter reads 793.5V. The percent of impedance value is 793.5 / 13800 = 0.0575. Therefore;
% Z = 0.0575 x 100 = 5.75%

This shows that if there was a 3-Phase Bolted fault on the secondary of the transformer then the maximum fault current that could flow through the transformer would be the ratio of 100 / 5.75 times the FLA of the transformer, or 17.39 x the FLA = 20,903A

TRANSFORMER FAULT CURRENT


Calculating the Short Circuit Current when there is a Transformer in the circuit. Every transformer has “ %” impedance value stamped on the nameplate. Why is it stamped? It is stamped because it is a tested value after the transformer has been manufactured. The test is as follows: A voltmeter is connected to the primary of the transformer and the secondary 3-Phase windings are bolted together with an ampere meter to read the value of current flowing in the 3-Phase bolted fault on the secondary. The voltage is brought up in steps until the secondary full load current is reached on the ampere meter connected on the transformer secondary.

So what does this mean for a 1000KVA 13.8KV – 480Y/277V. First you will need to know the transformer Full Load Amps Full Load Ampere = KVA / 1.73 x L-L KV
FLA = 1000 / 1.732 x 0.48 FLA = 1,202.85
The 1000KVA 480V secondary full load ampere is 1,202A.

When the secondary ampere meter reads 1,202A and the primary Voltage Meter reads 793.5V. The percent of impedance value is 793.5 / 13800 = 0.0575. Therefore;
% Z = 0.0575 x 100 = 5.75%

This shows that if there was a 3-Phase Bolted fault on the secondary of the transformer then the maximum fault current that could flow through the transformer would be the ratio of 100 / 5.75 times the FLA of the transformer, or 17.39 x the FLA = 20,903A

SYSTEM FAULT CURRENT


Below is a quick way to get a MVA calculated value. The MVA method is fast and simple as compared to the per unit or ohmic methods. There is no need to convert to an MVA base or worry about voltage levels. This is a useful method to obtain an estimated value of fault current. The elements have to be converted to an MVA value and then the circuit is converted to admittance values.

Utility MVA at the Primary of the Transformer


MVAsc = 500MVA

Transformer Data

13.8KV - 480Y/277V

1000KVA Transformer  Z = 5.75%

MVA Value

1000KVA / 1000 = 1 MVA

MVA Value = 1MVA / Zpu  = 1MVA / .0575 = 17.39 MVA

Use the admittance method to calculate Fault Current

1 / Utility MVA + 1 / Trans MVA = 1 / MVAsc

1 / 500 + 1 / 17.39 = 1 / MVAsc

0.002 + 0.06 = 1/ MVAsc

MVAsc = 1 / (0.002 + 0.06)

MVAsc = 16.129

FC at 480V = MVAsc / (1.73 x 0.48)

FC =  16.129 / 0.8304

FC =  19.423KA

FC = 19, 423 A

The 480V Fault Current Value at the secondary of the 1000KVA transformer based on an Infinite Utility Source at the Primary of the transformer as calculated in the Transformer Fault Current section in this article is 20,904A

The 480V Fault Current Value at the secondary of the 1000KVA transformer based on a 500MVA Utility Source at the Primary of the transformer as calculated in the System Fault Current section in this article is 19,432A

The 480V Fault Current Value at the secondary of the 1000KVA transformer based on a 250MVA Utility Source at the Primary of the transformer the calculated value is 18,790A

When the cable and its length is added to the circuit the fault current in a 480V system will decrease to a smaller value. To add cable into your calculation use the formula. Cable MVA Value MVAsc = KV2 / Z cable. Use the cable X & R values to calculate the Z value then add to the Admittance calculation as shown in this article.

The conclusion is that you need to know the fault current value in a system to select and install the correct Overcurrent Protective Devices (OCPD). The available FC will be reduced as shown in the calculations when the fault current value at the primary of the transformer is reduced. If the infinite method is applied when calculating fault current and 4 x FLA is added for motor contributions, then the fault current value that is obtained will be very conservative. This means the calculated value in reality will never be reached, so you reduce any potential overcurrent protection device failures due to fault current.

for your philippine electrical concerns...needs...installation...orders...safeelectrical2013@gmail.com

METRO MANILA PHILIPPINES

WIRE AND CABLE SUPPLIER IN METRO MANILA
WIRE AND CABLE SUPPLIER IN QUEZON CITY

WIRE AND CABLE SUPPLIER IN LUZON
WIRE AND CABLE SUPPLIER IN VISAYA

WIRE AND CABLE SUPPLIER IN SUBIC
WIRE AND CABLE SUPPLIER IN CLARK

WIRE AND CABLE SUPPLIER IN THE PHILIPPINES
WIRE AND CABLE SUPPLIER IN THE PHILIPPINES

ELECTRICAL SUPPLIER IN METRO MANILA
ELECTRICAL SUPPLIER IN QUEZON CITY

ELECTRICAL SUPPLIER IN LUZON
ELECTRICAL SUPPLIER IN VISAYA

ELECTRICAL SUPPLIER IN SUBIC
ELECTRICAL SUPPLIER IN CLARK

ELECTRICAL SUPPLIER IN PHILIPPINE INDUSTRIAL PARK
ELECTRICAL SUPPLIER IN PHILIPPINE ECONOMIC ZONE

ELECTRICAL SUPPLIER FOR PHILIPPINE FOREIGNERS
ELECTRICAL SUPPLIER FOR PHILIPPINE PROVINCES

FOR YOUR PHILIPPINE ELECTRICAL CONCERNS...NEEDS...INSTALLATION...QUOTATION...ORDERS
KINDLY EMAIL US: SAFEELECTRICAL2013@GMAIL.COM
                 SAFEELECTRICALONLINE@GMAIL.COM

FOR YOUR PHILIPPINE ELECTRICAL CONCERNS...NEEDS...INSTALLATION...QUOTATION...ORDERS:
KINDLY EMAIL US: SAFEELECTRICAL2013@GMAIL.COM
                 SAFEELECTRICALONLINE@GMAIL.COM

FOR PHILIPPINE INQUIRIES LIKE LIGHTNING ARRESTER SUPPLY AND INSTALLATION
CONTACT US:  

FOR PHILIPPINE INQUIRIES LIKE LIGHTNING ARRESTER SUPPLY AND INSTALLATION
CONTACT US: 

FOR PHILIPPINE INQUIRIES LIKE LIGHTNING ARRESTER SUPPLY AND INSTALLATION
CONTACT US: 

MOBILE NUMBERS: SMART: +63 09079522099 
                       +63 09214026477
  
                GLOBE: +63 09273919600
                       +63 09157920129

                SUN:   +63 9227192434
                       +63 09336253505

                WIRELESS LANDLINE:   +63 4068727
                                     +63 4922566
                
                LANDLINE:    +63 4317553



HURRY..CALL US...NOW!!!!
THANK YOU FOR YOUR ORDERS AND INQUIRIES...



LIGHTNING ARRESTER SUPPLIER AND INSTALLER IN THE PHILIPPINES
ELECTRICAL FENCE SUPPLIER AND INSTALLER IN THE PHILIPPINES


LIGHTNING ARRESTER SUPPLIER AND INSTALLER IN METRO MANILA
ELECTRICAL FENCE SUPPLIER AND INSTALLER IN METRO MANILA

LIGHTNING ARRESTER SUPPLIER AND INSTALLER IN THE PHILIPPINE ECONOMIC ZONE
ELECTRICAL FENCE SUPPLIER AND INSTALLER IN THE PHILIPPINE ECONOMIC ZONE

LIGHTNING ARRESTER SUPPLIER AND INSTALLER IN THE VISAYA REGION
ELECTRICAL FENCE SUPPLIER AND INSTALLER IN THE VISAYAS REGION

LIGHTNING ARRESTER SUPPLIER AND INSTALLER IN THE MINDANAO
ELECTRICAL FENCE SUPPLIER AND INSTALLER IN THE MINDANAO


FOR YOUR LIGHTNING STRIKE PROTECTION...LET US HELP YOU AVOID SUCH ACCIDENTS...
BEFORE IT IS TOO LATE...BEFORE IT IS TOO LATE...

WHEN LIGHTNING STRIKE HIT YOU..
I GUARANTEE YOU..YOU'LL NEVER LIVE TO TELL YOUR EXPERIENCE...

DON'T BE THE NEXT VICTIM...PROTECT YOURSELF..YOUR FAMILY..YOUR BUSINESS AT ALL TIMES..
INSTALL A LIGHTNING ARRESTER IN YOUR PLACE...DO IT NOW BEFORE YOUR CAUGHT UNAWARE...

IF YOU HAVE LIGHTING PROTECTION INSTALLED...
YOU'LL HAVE PEACE OF MIND...YOU CAN SLEEP WELL EVEN WHEN LIGHTNING STRIKES...

YOU KNOW YOUR WELL PROTECTED...
IN YOUR HOME, IN YOUR PLACE OF BUSINESS AND IN YOUR PROPERTIES...

HURRY..CALL US...NOW!!!!
THANK YOU FOR YOUR ADVANCE ORDERS AND INQUIRIES...


"PHILIPPINE FOREIGNERS AND PHILIPPINE PROVINCES ELECTRICAL SUPPLIER
 AND SERVICE PROVIDER"

"SAFE ELECTRICAL SUPPLY AND SERVICES"

No comments: